Experimental and theoretical study
of transverse solids motion in rotary kiln

Keywords: solids motion, rotary kilns

The transverse solids motion influences to great extend the mass- and heat transfer in rotary kilns. The motion modes that occur frequently in industrial rotary kilns are Slumping and Rolling (Figure 1).

The transition behavior from the slumping mode to the rolling mode was experimentally investigated on rotating cylinders for a variety of materials (Figure 2). A correlation of the two characteristic angles of repose of a slumping bed was obtained. To calculate the critical Froude number, a mathematical model was developed. It demonstrates that the size ratio (particle to cylinder diameter) represents an important influencing parameter. This model is advantageous for practical uses. Its validity was tested by own and foreign measurements (Figure 3).

For the rolling mode, the model from Mellmann was further developed. With it the influence of the rotation speed, the filling degree, the cylinder diameter and the materials can be well described. No fitting parameters are needed for the model calculation. Good agreement was found between the model and experimental measurements in the present work as well as in the literature. For the extreme case (Froude number be zero), an analytical solution was derived. Comparisons with the numerical solution demonstrate that, at high dynamic angles of repose and low Froude numbers the deviation between the analytical and numerical solutions is negligibly small(Figure 4).
The warming process of a rolling bed was investigated on a direct-heated pilot kiln. With the developed measuring technique, it was possible to measure the temperatures within the solid bed. It was shown that, in the plug flow region of the bed the temperatures keeps approximately constant in the circumferential direction. In the radial direction, however, there exist great temperature differences. The experimental results can be used in the future for the mathematical modeling of the heat transfer within the solid bed.
Publications


